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Synopsis 

During creep deformation many polymeric materials exhibit small cracklike zones, crazes. In 
the literature it is reported that crazing will not occur if the strain is kept under a critical value, specific 
for each material. This fact has importance in avoiding rupture. In this work a uniaxial theory 
is put forward that is based on a creep law describing the buildup of internal stress and on the Ka- 
chanov damage law. Crazing is here regarded to be a stage in the damage accumulation process, 
the final stage of which is rupture. Relations among the critical strain, the corresponding critical 
stress, and the minimum stress leading to creep rupture are derived. Some conditions that are 
necessary for the critical strain concept to work are formulated. 

INTRODUCTION 

During recent years there have been numerous works published on the crazing 
phenomenon in glassy polymers. Crazing is a part of a time- and stress-depen- 
dent deterioration process where the final state can be rupture. As design against 
fracture has become more important, increasing efforts have also been directed 
towards the problem of crazing. 

Today craze formation is considered to be a mode of plastic deformation. 
Crazes are not believed to be true cracks, although they reflect light in a similar 
way. They contain polymer material that interconnects the normal polymer 
material on both sides of the craze. The material in the craze is plastically ori- 
ented with the molecules approximately normal to the plane of the craze, i.e., 
in the direction of the tensile stress which produced the cra2e.l 

Experimentally, it has been found, e.g., by Menges et al.,2v3 that there exists 
a critical value of strain ccr below which crazing is never observed. This value 
is specific for each material within a large group of polymers. In fast creep tests, 
i.e., at  high load levels, this critical strain value can be exceeded significantly 
without any observable crazing. Furthermore, they claim that the critical strain 
is about 0.8%-1% for most glassy polymers. Other values can be found in liter- 
ature. However, there are also materials where no critical strain value can be 
f ~ u n d . l ? ~  

For semicrystalline polymers like polyethylene, polyoxymethylene, etc., crazing 
can hardly occur in the amorphous regions. For such materials, special methods 
have been employed (dilatation, optical methods, etc.) by Menges et al.235 to 
determine the strain level at  which irreversible changes occur. A corresponding 
critical strain can be defined, being on the order of 2%-3%. 

From an engineering point of view, it would be more important to determine 
the critical stress value than the critical strain. Menges et a L 2 y 3  have determined 
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E,, for numerous polymeric materials, including reinforced plastics, but no value 
of a corresponding critical stress has been given. This problem has been rec- 
ognized by Gotham: who consequently has given values of the critical stress rCr 
for craze initiation. 

In the following, a continuum theory is presented, which gives a relation be- 
tween ccr and cCr. The theory is based on the internal stress concept. By internal 
stress is here meant a quantity entering the constitutive relation in such a way 
that the deformation rate is changed with deformation. Alternative terms would 
be back-stress or deformation resistance. 

The theory is an attempt to clarify the relations between critical strain and 
other material parameters such as the critical stress for crazing or for rupture 
and the constants in the creep law and in the Kachanov damage law, as well as 
to clarify the dependence of the critical strain value on the sensitivity of the ex- 
perimental method for indicating crazes. 

THEORETICAL MODEL 

The first assumption is that the deformation of the material can be described 
by the uniaxial constitutive equation 

i, = B ( u  - K E , ) ~  u > Kt, (1) 
where the quantity KE, can be interpreted as the internal stress. As was shown 
in an earlier paper by Brathe and Rigdahl,6 this is roughly the case for many 
polymeric materials, although it is arguable whether the power function rather 
than some other function of the effective stress u - Kt, fits the experimental 
data best. 

For a constant-load creep test with the initial stress UO) using the condition 
of constant volume and the linear strain concept, i.e., for small strains, we will 
get the creep strain as a function of time for an initially virgin material6: 

1 - (1 + X t ) l / ( n - l )  
t, = 

K/UO -1 
where n > 1 and 

X = Bc$(n - l ) ( K / ~ o  - 1) (3) 
The effective stress, defined as applied stress minus internal stress, can now be 
expressed as 

(4) 
The next assumption is that the rate of material deterioration is a function of 
the effective stress, viz., 

(5) 
where o is the damage parameter, 0 I w I 1. This equation was introduced by 
Kachanov7 for metals. 

It is now possible to use some of the results for creep relaxation from Brathea 
for the combination of eqs. (4) and (5), 

Ueff = oo(1 + At)- l / (n- l )  

& = C[U,ff/(l - w)]u 
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which was integrated with the initial value w = 0 at t = 0 to give 

i f n - u #  landwhere 
(u + l ) (n - 1) 

n - u - 1  
p = Ca6 

Let us now assume that when the damage has increased to a fixed value, say w*,  
then the crazes will become visible. 

This value w* is reached after the time t*(ao) and at the strain E+(UO). The time 
t* can be found immediately by inserting w* in eq. (7), 

(n-l)/(n-v-l) 

x ' I (  ; 1 - ll 
t* = - 1 + - [l - (1 - w*)v+1 

and the strain is given for the time t* by eq. (2), 

Klao - 1 
1 - (1 + At*)-l/(n-l) 

€* = 

Equation (7) in (10) yields 

€* = 1 - - [l - (1 - w*)v+1 ] + l)-l-l) x (E - 1)-1 (; (11) 

In Figure 1 creep curves according to eq. (2) are shown together with the time 
dependence of the critical strain from eq. (10) corresponding to various levels 
of damage. They have roughly the same shape as the experimental curves in 
Refs. 2 and 3. 
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Fig. 1. Creep curves (solid lines) for various constant stresses according to eq. (2), with E = 1 GPa, 

(MPa)-%-l, K = 200 MPa, and n = 6, with critical strain as a function of time (dashed 
(MPa)-"s-' and 

B = 
lines) for two damage levels and the values of E, B, K ,  and n as above and C = 
v = 5.5. 
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We will now consider the consequences of a long time under load. 
(i) If n > u + 1, we will, according to Brathe? exceed we after a finite time no 

matter how small the initial stress is. This means that for such material there 
exists no critical strain. 

(ii) If Y < n < u + 1, we have to distinguish between three cases depending on 
the initial stress CJO: (a) if oo > or, we will have rupture in a finite time; (b) if or 
> GO > ocr, we will pass the damage level w* but will not have rupture in a finite 
time; (c) if ucr > GO, we will have neither visible crazes nor rupture for finite 
times. 

The minimum stress to cause crazes a,, can be determined from eq. (7), 
since 

(1 + Xt,)-(u+l-n)/(n-U + 0 as t* + co 

This gives 

CffZ;"(v+ 1) 1 - (1 - @*)"+I = 
B(K/ac, - l ) ( ~  + 1 - n )  

where ucr can be solved for, a t  least numerically. 
The corresponding strain is given by eq. (2): 

E,, = (5 - 1)-l 

These expressions can be simplified, if B,, << K and if w+ << 1, by use of the bi- 
nominal series expansion of the power expression, which yields 

ffcr (14) 

The minimum stress causing rupture, gr, is solved from eq. (7) with the con- 
dition w = 1 (see Ref. 8), which gives 

If 6,. << K,  then 

and the corresponding strain is or divided by K .  
Finally, the approximate relation between the minimum stress required to 

cause crazes and the minimum stress to cause creep rupture can be found by 
combining eqs. (12) and (16) for 

(18) 

<< K :  
ffcr/ffr N [1 - (1 - W*)Y+l]l/("+l-n) 

If also w* is small, then 
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DETERMINATION OF MATERIAL CONSTANTS 

Determination of K ,  B and n 

Apart from the well-known parameters B and n,  the constitutive equation (1) 
contains an "elastic modulus" K relating the value of the internal stress to the 
creep strain, ai = KE,.  The specific value of K for a given material can be ob- 
tained either by stress relaxation tests or by estimating the final strain of the 
ceasing creep process by an extrapolation method. Both techniques are analyzed 
in detail in Ref. 6. For a relaxation experiment it consists of plotting the de- 
rivative -3alblnt versus a and extrapolating the resulting curve to -ba/blnt 
= 0. The value of the stress at  the intercept with the a-axis is equal to the stress 
level of the relaxation test reached after infinite time and given by a- = KEEO/(K 
+ E) ,  where EEO is the initial stress of the relaxation experiment. From this 
relation the parameter K can be evaluated knowing the value of the tensile 
modulus E .  For constant-load creep, a corresponding procedure could be applied 
with a replaced by E .  

Returning to relaxation, the slope of the -balblnt(a) curve at  -baldlnt = 
0 is easily showng to be l l ( n  - l), and from this relation a value of the exponent 
n is obtained. Several techniques can now be employed for the determination 
of B. For example, if the decaying stress in a relaxation experiment is plotted 
versus ln(time), a sigmoid curve is normally obtained. The inflexion point of 
this curve along the time axis tl is given by 

Provided the parameters K ,  E, and n are known, a value of B is found from eq. 
(20). 

Determination of C and v 

Information regarding the magnitudes of C and v in the damage law, eq. (5), 
can be obtained from constant strain rate experiments. For reasons of simplicity 
we assume that the elastic term irlE in eq. ( 1 )  can be neglected. Then we have 
the creep strain equation 

(21) 

E = uot (22) 

i = B ( o  - K E ) n  

and 

where uo is the constant strain rate. 
Combining eqs. (21) and (22) results in 

a = ( u p  + Bl/nKuot)/Bl/n (23) 

g,ff = - Kuot = u;'~B-'/'' (24) 
where eq. (23) has also been used. 

The effective stress being constant, eq. (5) can be integrated with the initial 
condition w = 0, which will give an expression of damage as a function of time. 

The effective stress is 
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Following Ka~hanov,~ we insert the rupture condition w = 1 and get the rupture 
time 

(25) 
Performing tests at  different strain rates, i.e., different effective stresses, will 
lead to different rupture times. Using eq. (25) to make a logtR versus loga,ff plot 
of the experimental data will give the constants C and u. 

Using eqs. (5) and (24), assuming that the damage w is small and that w ( t  = 
0) = 0, gives the time dependence of w: 

w = C(U"b"/BY/")t (26) 

As before, we now assume that the crazes are observed when the damage has 
reached the value w = w*, and this happens when t = t* and E = t+: 

(27) 

tR = 1/c(Y + 1)a;ff 

W* = C ( u b'"/B 'ln)t * 

or using eq. (22), 

w* = C(Ut;/n-l /Bu/n)E* (28) 

From eq. (28) it can be seen that if u < n, the strain E* will decrease with de- 
creasing applied strain rate UO, and in the limit uo - 0, E* is zero. Hence our 
theory predicts that the critical strain concept is not applicable for small constant 
strain rate situations. 

For n = u, eq. (28) reduces to 

w* = (C/B)E* (29) 

A more accurate analysis would also include the elastic strain, which is not 
which is independent of the applied strain rate. 

considered here. 

DISCUSSION 

Review of the Assumptions 

The first assumption in the preceding analysis relates to the constitutive 
equation, eq. (l), which fairly well describes the creep behavior of a number of 
polymers as was shown by Brathe and Rigdahl.6 However, under certain cir- 
cumstances a variation in the constant B with the applied stress is noticed, in- 
dicating that another function of the effective stress (a - K E , )  would be more 
appropriate, e.g., of the sinh type. Still the constitutive relation used leads to 
the concept of a decaying effective stress, which is important here when de- 
scribing the creep deformation and crazing behavior of polymeric materials 
subjected to constant loading. The damage is not assumed to influence the strain 
rate. 

The second assumption is that the rate of damage is assumed to be a power 
function of the stress, eq. (5). This is in analogy with current theories for metallic 
materials. In contrast to the common damage theory, as described by Kacha- 
IIOV,~ b is here assumed to be related not to the applied, but to the effective stress. 
The effective stress is taken as the difference between the applied stress and the 
internal stress. 
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The third assumption deals with the observation of crazes at a specific damage 
level w:. Although we describe both the craze size and craze distribution with 
only one parameter, this assumption does not seem to be controversial. By 
changing the value of w*,  the sensitivity of the craze observation method can be 
taken into account by the theory. 

The last assumption is that rupture occurs at w = 1. Other rupture conditions 
could possibly be applied. 

Consequences of the Theory 

The damage theory and the concept of internal stress used in a constitutive 
equation of the power law type thus provide a correlation between the minimum 
stress leading to rupture cr, the critical strain t,, for the onset of crazing, and the 
corresponding stress ccp A correlation of this kind has implicitly been assumed 
in experimental analysis but has never been shown to exist. 

It follows from the approach adopted in this paper that only those materials 
exhibiting a diminishing creep rate, i.e., ceasing creep, prior to the eventual 
tertiary creep stage due to instability, will have a critical strain limit 6,. Another 
formulation of this condition is that a stress relaxation test can be extrapolated 
to end at a nonzero level. Evidently this implies that there may exist materials 
that do not have a critical strain value tcr. 

Menges et al. have on a number of occasions presented results showing that 
ccr, within a certain temperature interval, is roughly independent of the tem- 
perature. In the theory outlined here this is easily interpreted as arising from 
the constants B and C having the same temperature dependence, since only the 
ratio between those parameters enters the equation for ccr, eq. (11). Th‘ is means 
that the activation energies for the creep deformation process and for the dete- 
rioration process are of the same magnitude. 

The design of components subjected to a multiaxial state of stress is more 
complicated. Menges et al.293 have proposed two different methods. One 
method is to perform creep tests on the construction under study and to evaluate 
the isochronous stress-strain curves. This is costly and time-consuming. An- 
other method is to use an extension of the elastic theory. However, it appears 
to be difficult3 to establish the value of Poisson’s ratio for polymers, since it ob- 
viously varies with time and state of stress. 

In our interpretation these difficulties stem from the fact that one can not 
assume a priori that the value of Kt, in one direction is independent of the creep 
deformation in perpendicular directions. However, some results from the 
well-established frozen-in stress technique in photoelasticity seem to indicate 
that in the limit state where all creep has ceased, Poisson’s ratio is very near 0.5.1° 
Thus for the limiting deformation state, which is associated with K ,  the theory 
of elasticity with Poisson’s ratio equal to 0.5 can probably be used. For the in- 
stantaneous part, however, which is associated with E ,  a quite different Poisson’s 
ratio must be employed. In which way the development of crazes in the material 
depends on the different components of a multiaxial state of stress does not seem 
to be clear. Our suggestion for future work is that the multiaxial case be eval- 
uated both theoretically and experimentally. 

We believe that the present theory can also be applied to composite materials, 
and especially to the process of delamination between the different components 
of such a material. 
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CONCLUSIONS 
The theory presented in this work, although based on a number of assump- 

tions, establishes the conditions for the existence of a critical strain concept as 
introduced by Menges. 

To each value of the critical strain there corresponds a critical stress value, 
which is also connected to the minimum stress causing creep rupture. 

Different sensibilities when observing craze initiation can, in principle, be 
accounted for by varying the associated characteristic damage value. 

The theory indicates that the critical strain as determined by creep experi- 
ments can adopt lower values a t  low constant strain rate experiments. 

The theory could be of value when developing new polymeric materials with 
high resistance to creep rupture. 
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